Possibilities of artificial intelligence in the development of antihypertensive herbal preparations
https://doi.org/10.59598/ME-2305-6053-2025-114-1-137-140
Abstract
In the modern pharmaceutical industry, the application of artificial intelligence significantly enhances the process of drug development. Recent studies have revealed that artificial intelligence can notably improve the effectiveness of hypertension treatment by optimizing the compositions of herbal blends.
This study proposes three unique formulations of blends developed using the ChatGPT neural network. The three devised blend compositions are formulated based on the analysis of plant data, their interactions, and treatment effectiveness. Each composition is meticulously selected to ensure maximum efficacy and minimal side effects. These innovative approaches have the potential to significantly enhance patients' quality of life by providing them with more effective and safer means for treating hypertension and other cardiovascular conditions. This progress opens up new perspectives for future medical development, emphasizing the significance of the symbiosis between technology and medical practice.
About the Authors
A. S. TurekhanovaKazakhstan
Aruzhan Sabitkyzy Turekhanova
160019, Shymkent, Al-Farabi Square, 1/1
Zh. S. Toksanbaeva
Kazakhstan
160019, Shymkent, Al-Farabi Square, 1/1
A. G. Ibragimova
Kazakhstan
160019, Shymkent, Al-Farabi Square, 1/1
S. A. Syzdykova
Kazakhstan
160019, Shymkent, Al-Farabi Square, 1/1
M. M. Kulbayeva
Kazakhstan
160019, Shymkent, Al-Farabi Square, 1/1
References
1. Sahu A., Mishra J., Kushwaha N. Artificial Intelligence (AI) in Drugs and Pharmaceuticals. Comb. Chem. High. Throughput. Screen. 2022; 25 (11): 1818-1837. https://doi.org/10.2174/1386207325666211207153943
2. Karchija A. A. Cifrovaja medicina – real'nost' segodnjashnego dnja. Jekonomicheskie i social'nye problemy Rossii. 2021; 2 (46): 132-142.
3. Chestnov O.P., Bojcov S.A., Kulikov A.A., Baturin D.I. Mobil'nye tehnologii na sluzhbe ohrany zdorov'ja. Medicinskie novosti. 2015; 2 (245): 6-10.
4. Zagorodnikova K.A. Organizacija monitoringa bezopasnosti lekarstvennyh sredstv v mire – metodologicheskie podhody. Tihookeanskij medicinskij zhurnal. 2015; 1 (59): 11-15.
5. Tavberidze K. Ju. Cifrovoj marketing v sfere zdravoohranenija. Obshhestvennoe zdorov'e i zdravoohranenie. 2023; 2 (77): 18-26.
6. Husanov U.A.U., Kudratillaev M.B.U., Siddikov B.N.U., Dovletova S.B. Iskusstvennyj intellekt v medicine. Science and Education. 2023; 5: 772-782.
7. Yinlong L., Yilin L., Ziyue S., Xinggao L. Semisupervised contrastive regression for pharmaceutical processes. Expert Systems with Applications. 2024; 238: 121974. https://doi.org/10.1016/j.eswa.2023.121974
8. Agatonovic-Kustrin S., Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis. 2000; 22 (5): 717-727. https://doi.org/10.1016/S0731-7085(99)00272-1
Review
For citations:
Turekhanova A.S., Toksanbaeva Zh.S., Ibragimova A.G., Syzdykova S.A., Kulbayeva M.M. Possibilities of artificial intelligence in the development of antihypertensive herbal preparations. Medicine and ecology. 2025;(1):137-141. (In Russ.) https://doi.org/10.59598/ME-2305-6053-2025-114-1-137-140