Evaluation of the effectiveness of osteoregeneration using rhBMP-2 and bone allograft on a model of femoral defect in rabbits
https://doi.org/10.59598/ME-2305-6053-2025-114-1-126-136
Abstract
Aim. To carry out a histological and histomorphometric assessment of bone tissue regeneration processes using a bone allograph prepared according to the Marburg bone bank system in combination with rhBMP-2 on a rabbit femoral defect model.
Materials and methods. In this study, 2 groups were formed, each with 24 subjects (rabbits), who had a defect with a diameter of 5 mm in the distal metaphysis of the femur. In group 1, the defect was filled with bone allograft in combination with rhBMP-2. In group 2, the defect was filled with bone allograft without additional drugs. Further, histological and statistical processing of the obtained data was carried out.
Results. On day 14, in the AG+rhBMP-2 group, newly formed bone tissue amounted to 34.75±5.67% of the total area of the cortical plate defect. On day 30, in the AG+rhBMP-2 group, the closure of the cortical plate defect was 79.12±14.32%, the newly formed bone tissue covered 80.75% of the length and 71.37% of the thickness of the cortical plate. On day 60 in the AG+rhBMP-2 group, newly formed bone tissue covered the total area of the cortical plate defect by 64.50±27.73%, length by 62%, and thickness by 65.25%.
Discussion. The data obtained indicate an acceleration of osteoregeneration in the early stages of bone plate restoration in the AG+rhBMP-2 group, however, the results obtained by 60 days were extremely heterogeneous, indicating the dysenergic effect of rhBMP-2 on mesenchymal progenitor cells and the associated excessive resorptive effect of rhBMP-2 in some cases.
Conclusion. According to the results of this study, it can be seen that the use of bone allograft in combination with rhBMP-2 at the late stages of bone regeneration leads to unsatisfactory results, which manifests itself in the form of high heterogeneity of the data obtained, among which, in a significant part of cases, there is not sufficient closure of the defect with newly formed bone tissue.
About the Authors
B. E. TuleubaevKazakhstan
100008, Karaganda, Gogolya str., 40
D. M. Darybaev
Kazakhstan
Daryn Maratuly Darybaev – the 3rd year doctoral student of the Medicine 8D10100 specialty
100008, Karaganda, Gogolya str., 40
A. A. Koshanova
Kazakhstan
100008, Karaganda, Gogolya str., 40
I. K. Avromidi
Kazakhstan
100008, Karaganda, Gogolya str., 40
References
1. Molina C.S., Stinner D.J., Obremskey W.T. Treatment of traumatic segmental long-bone defects: A critical analysis review. JBJS Rev. 2014; 2: e1.
2. Cha H.S., Kim J.W., Hwang J.H. и др. Frequency of bone graft in implant surgery. Maxillofac. Plast. Reconstr. Surg. 2016; 38: 19. https://doi.org/10.1186/s40902-016-0064-2
3. Dimitriou R., Jones E., McGonagle D., Giannoudis P.V. Bone regeneration: current concepts and future directions. BMC Med. 2011; 9: 66. doi: 10.1186/1741-7015-9-66.
4. Engh G.A., Ammeen D.J. Bone loss with revision total knee arthroplasty: defect classification and alternatives for reconstruction. Instr. Course Lect. 1999; 48: 167-75.
5. Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J. Bone Joint Surg. Am. 2011; 93 (23): 2227-2236. doi: 10.2106/JBJS.J.01513
6. Jensen A.T., Jensen S.S, Worsaae N. Complications related to bone augmentation procedures of localized defects in the alveolar ridge. A retrospective clinical study. Oral Maxillofac. Surg. 2016; 20: 115-122. https://doi.org/10.1007/s10006-016-0551-8
7. Ahlmann E., Patzakis M., Roidis N., Shepherd L., Holtom P. Comparison of anterior and posterior iliac crest bone graft in terms of harvest-site morbidity and functional outcomes. J. Bone. Joint Surg. Am. 2002; 84 (5): 716-720. https://doi.org/10.1302/0301-620X.84B5.12571
8. St. John T.A., Vaccaro A.R., Sah A.P., Schaefer M., Berta S.C., Albert T., Hilibrand A. Physical and monetary costs associated with autogenous bone graft harvesting. Am. J. Orthop. 2003; 32 (1): 18-23.
9. Lee O.S., Lee K.J., Lee Y.S. Comparison of bone healing and outcomes between allogenous bone chip and hydroxyapatite chip grafts in open wedge high tibial osteotomy. J. Mater. Sci. Mater. Med. 2017; 28 (12): 189. https://doi.org/10.1007/s10856-017-5998-0
10. Lee S.S., So S.Y., Jung E.Y., Seo M., Lee B.H., Shin H., Wang J.H. The efficacy of porous hydroxyapatite chips as gap filling in open-wedge high tibial osteotomy in terms of clinical, radiological, and histological criteria. Knee. 2020; 27 (2): 436-443. https://doi.org/10.1016/j.knee.2019.12.008
11. Giannoudis P.V., Dinopoulos H., Tsiridis E.Bone substitutes: an update. Injury. 2005; 36 (Suppl. 3): 20-27.
12. Saginova D., Tashmetov E., Tuleubaev B., Kamyshanskiy Y., Davanov Sh. Effect of Platelet-rich Plasma Combined with Marburg Bone Bank-prepared Bone Graft in Rabbit Bone Defect Model. Shiraz E-Medical Journal. 2023; 24 (9): e136960. https://doi.org/10.5812/semj-136960
13. Gianulis E., Wetzell B., Scheunemann D., Gazzolo P., Sohoni P., Moore M.A., Chen J. Characterization of an advanced viable bone allograft with preserved native bone-forming cells. Cell Tissue Bank. 2023; 24 (2): 417- 434. https://doi.org/10.1007/s10561-022-10044-2
14. Brydone A.S., Meek D., Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc. Inst. Mech. Eng. H. 2010; 224 (12): 1329-1343. https://doi.org/10.1243/09544119JEIM770
15. Finkemeier C.G. Bone-grafting and bone-graft substitutes. J. Bone Joint Surg. Am. 2002; 84 (3): 454- 464.
16. García-Gareta E., Coathup M.J., Blunn G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015; 81: 112-121. https://doi.org/10.1016/j.bone.2015.07.007
17. Giannoudis P.V., Einhorn T.A. Bone morphogenetic proteins in musculoskeletal medicine. Injury. 2009; 40 (Suppl. 3): 1-3.
18. Dimitriou R., Tsiridis E., Giannoudis P.V.Current concepts of molecular aspects of bone healing. Injury. 2005; 36 (12): 1392-1404. https://doi.org/10.1016/j.injury.2005.07.019
19. Saab M., Hildebrand F., Martel B., Blanchemain N. Osteoinductive Bone Morphogenic Protein, Collagen Scaffold, Calcium Phosphate Cement, and MagnesiumBased Fixation Enhance Anterior Cruciate Ligament Tendon Graft to Bone Healing In Animal Models: A Systematic Review. Arthroscopy. 2023; 39 (2): 529-548. https://doi.org/10.1016/j.arthro.2022.05.011
20. Afewerki S., Bassous N., Harb S., Palo-Nieto C., Ruiz-Esparza G.U., Marciano F.R., Webster T.J., Furtado A.S.A., Lobo A.O. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine. 2020; 24: 102143. https://doi.org/10.1016/j.nano.2019.102143
21. Jara Uribe F., Cantín M., Alister J.P., Vilos C., Fariña R., Olate S. Bone morphogenetic protein and its option as an alveolar cleft treatment. International Journal of Morphology. 2017; 35 (1): 310-318. https://doi.org/10.4067/S0717-95022017000100049
22. Dimitriou R., Jones E., McGonagle D., Giannoudis P.V. Bone regeneration: current concepts and future directions. BMC Med. 2011; (9): 66. https://doi.org/10.1186/1741-7015-9-66
23. Katagiri T., Watabe T. Bone Morphogenetic Proteins. Cold Spring Harb. Perspect. Biol. 2016; 8 (6): a021899. https://doi.org/10.1101/cshperspect.a021899
24. Chen G., Deng C., Li Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012; 8 (2): 272-88. https://doi.org/10.7150/ijbs.2929
25. Kim S.H., Choi H.J., Yoon D.S., Son C.N. Serial administration of rhBMP-2 and alendronate enhances the differentiation of osteoblasts. Int. J. Rheum. Dis. 2021; 24 (10): 1266-1272. https://doi.org/10.1111/1756-185X.14189
26. Zhou L., Wang J., Mu W. BMP-2 promotes fracture healing by facilitating osteoblast differentiation and bone defect osteogenesis. Am. J. Transl. Res. 2023; 15 (12): 6751-6759
27. Sales P.H.D.H., Oliveira-Neto O.B., de Lima F.J.C., Carvalho A.A.T., Leão J.C. Effectiveness of rhBMP-2 versus iliac autogenous bone graft in reconstructive surgery of cleft patients: an umbrella review. Br. J. Oral. Maxillofac. Surg. 2022; 60 (6): 723- 730. https://doi.org/10.1016/j.bjoms.2021.12.001
28. Gonzaga M.G., Dos Santos Kotake B.G., de Figueiredo F.A.T., Feldman S., Ervolino E., Dos Santos M.C.G., Issa J.P.M. Effectiveness of rhBMP-2 association to autogenous, allogeneic, and heterologous bone grafts. Microsc. Res. Tech. 2019; 82 (6): 689-695. https://doi.org/10.1002/jemt.23215
29. Fuchs T., Stolberg-Stolberg J., Michel P.A., Garcia P., Amler S., Wähnert D., Raschke M.J. Effect of Bone Morphogenetic Protein-2 in the Treatment of Long Bone Non-Unions. J. Clin. Med. 2021; 10 (19): 4597. https://doi.org/10.3390/jcm10194597
30. Saginova D., Tashmetov E., Kamyshanskiy Y., Tuleubayev B., Rimashevskiy D. Evaluation of Bone Regenerative Capacity in Rabbit Femoral Defect Using Thermally Disinfected Bone Human Femoral Head Combined with Platelet-Rich Plasma, Recombinant Human Bone Morphogenetic Protein 2, and Zoledronic Acid. Biomedicines. 2023. 16; 11 (6): 1729. https://doi.org/10.3390/biomedicines11061729
31. The Code of the Republic of Kazakhstan on the health of the people and the healthcare system. Chapter 24. Donation and Transplantation. https://adilet.zan.kz/eng/docs/K2000000360
32. Order of the Minister of Health and Social Development of the Republic of Kazakhstan «On the approval of the rules for the formation and maintenance of registers of tissue recipients (part of the tissue) and (or) organs (part of the organs), as well as tissue donors (part of the tissue) and (or) organs (part of organs), hematopoietic stem cells». https://adilet.zan.kz/rus/docs/V1500011477
33. Pruss A., Seibold M., Benedix F., Frommelt L. Validation of the Marburg bone bank system for thermodisinfection of allogenic femoral head transplants using selected bacteria, fungi, and spores. Biologicals. 2003; 31 (4): 287-294. https://doi.org/10.1016/j.biologicals.2003.08.002.
34. Başdelioğlu K., Meriç G., Sargın S., Atik A., Ulusal A.E., Akseki D. The effect of platelet-rich plasma on fracture healing in long-bone pseudoarthrosis. Eur. J. Orthop. Surg. Traumatol. 2020; 30 (8): 1481-1486. https://doi.org/10.1007/s00590-020-02730-2
35. Cruz-Orive L.M., Weibel E.R. Recent stereological methods for cell biology: a brief survey. Am. J. Physiol. 1990; 258 (4): 148-156.
36. Chiu Y.L., Luo Y.L., Chen Y.W., Wu C.T., Periasamy S., Yen K.C. Regenerative Efficacy of supercritical carbon dioxide-derived bone graft putty in rabbit bone defect model. Biomedicines. 2022; 10 (11): 2802.
37. Burkitt H.G., Young B., Wheater J.W. Wheater’s Functional Histology: A Text and Colour Atlas. New York: Churchill Livingstone; 2015: 407.
38. Dempster D.W., Compston J.E., Drezner M.K., Glorieux F.H., Kanis J.A., Malluche H. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013; 28 (1): 2-17.
39. Parfitt A.M. Bone histomorphometry: proposed system for standardization of nomenclature, symbols, and units. Calcif. Tissue Int. 1988; 42 (5): 284-286. https://doi.org/10.1007/BF02556360
40. Compston J. Bone histomorphometry. In: Arnett T.R., Henderson B. Methods in bone biology. London, England: Chapman & Hall; 1998: 177-199. https://doi.org/10.1007/978-0-585-38227-2
41. Zhu L., Liu Y., Wang A., Zhu Z., Li Y., Zhu C., Che Z., Liu T., Liu H., Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol. 2022; 10: 810880. https://doi.org/10.3389/fbioe.2022.810880
42. Wu M., Chen G., Li Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016; 4: 16009. https://doi.org/10.1038/boneres.2016.9
43. Koseki T., Gao Y., Okahashi N., Murase Y., Tsujisawa T., Sato T., Nishihara T. Role of TGF-β family in osteoclastogenesis induced by RANKL. Cellular Signalling. 2002; 14 (1): 31-36. https://doi.org/10.1016/s0898-6568(01)00221-2
44. Kaneko H., Arakawa T., Mano H., Kaneda T., Ogasawara A., Nakagawa M., Toyama Y., Yabe Y., Kumegawa M., Hakeda Y. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors inmature osteoclasts. Bone. 2000; 27: 479-486.
45. Miao X., Yuan J., Wu J., Zheng J., Zheng W., Wang F., Wang C., Li X., Liu S., Shi Z., Li J. Bone Morphogenetic Protein-2 Promotes Osteoclastsmediated Osteolysis via Smad1 and p65 Signaling Pathways. Spine. 2021; 46 (4): E234-E242. https://doi.org/10.1097/BRS.0000000000003770
46. Toth J.M., Boden S.D., Burkus J.K., Badura J.M., Peckham S.M., McKay W.F. Short-term osteoclastic activity induced by locally high concentrations of recombinant human bone morphogenetic protein-2 in a cancellous bone environment. Spine. 2009; 34 (6): 539- 550. https://doi.org/10.1097/BRS.0b013e3181952695
Review
For citations:
Tuleubaev B.E., Darybaev D.M., Koshanova A.A., Avromidi I.K. Evaluation of the effectiveness of osteoregeneration using rhBMP-2 and bone allograft on a model of femoral defect in rabbits. Medicine and ecology. 2025;(1):126-136. (In Russ.) https://doi.org/10.59598/ME-2305-6053-2025-114-1-126-136