Preview

Medicine and ecology

Advanced search

Varicella virus: natural course, clinical manifestations, immunity, genetic diversity, current and future vaccination strategies

https://doi.org/10.59598/ME-2305-6053-2025-114-1-30-38

Abstract

The causative agent of varicella virus is widespread. In children, especially with a complicated premorbid background, there is a high incidence of severe forms and complications. Widespread use of specific prophylaxis is necessary.

According to WHO estimates, 4.2 million registered cases of severe complications of chickenpox resulted in 4,200 deaths. Severe course of varicella virus, addition of complications and mortality are typical for newborns and individuals with impaired immune system. The following complications were identified in deceased patients with varicella virus: bacterial (55%), pneumonia (54%), hemorrhagic (41%), from the central nervous system (33%).

The genetic diversity of causative agent of varicella virus plays a key role in its pathogenicity, epidemiology and response to vaccination. Despite successful vaccination programs, the virus continues to circulate in the population, which emphasizes the need for a deep understanding of its genetic diversity. Genetic diversity of varicella-zoster viruses may influence pathogenicity, immune response, and vaccine efficacy, making it an important subject of research. Global research results in this area highlight the importance of causative agent of chickenpox genetic monitoring for understanding its evolution and developing effective vaccination and treatment strategies. These results may be useful for epidemiologists, immunologists, virologists, and infectious disease specialists.

About the Authors

Z. E. Alshimbayeva
Karaganda Medical University NC JSC
Russian Federation

Zarina Еrsainovna Alshimbaeva – Department of Infectious Diseases and

100000, Karaganda, Gogol st., 40



R. Kh. Begaydarova
Karaganda Medical University NC JSC
Russian Federation

Department of Infectious Diseases and

100000, Karaganda, Gogol st., 40



I. A. Kadyrova
Karaganda Medical University NC JSC
Russian Federation

Research Laboratory of Institute of life sciences

100000, Karaganda, Gogol st., 40



References

1. Begajdarova R.H., Sadibekova M. B., Satibaldieva A. D. Klinicheskij sluchaj negladkogo techenija vetrjanoj ospy s bakterial’noj flory u rebenka na fone deficitnyh sostojanij. Medicina i jekologija. 2022; 2: 98-103.

2. Vanjarkina A.C., Petrova A.G., Bajanova T.A. Vakcinoprofilaktikau detej: znanija roditelej ili kompetencija vracha. Tihookeanskij medicinskij zhurnal. 2019; 3: 23-28.

3. Zakirova A.M., Tambova N.A., Samarodnova E.A. Novye realii vetrjanoj ospy. Medicinskij sovet. 2022; 16 (12): 106-113.

4. Kramar V., Bokova Z.M., Myl’nikova M.M., Torshhoeva L.A. Vetrjanochnyj jencefalit u detej: kliniko-laboratornye osobennosti. Volgogradskij nauchno-medicinskij zhurnal. 2019; 1: 42-45.

5. Pil’guj Je. I. Profilaktika vetrjanoj ospy u detej s vrozhdennym bulljoznym jepidermolizom: Avtoref. dis. kand. med. nauk. M., 2023: 24.

6. Rojtberg G.E. Vnutrennie bolezni. Laboratornaja i instrumental’naja diagnostika: ucheb. posobie. M.: MEDpress-inform. 2011: 800.

7. Saburova O.A., Butina T.Ju., Rjumin A.M., Mihajlova E.A. Immunnologicheskie kriterii prognozirovanija tjazhelyh i oslozhnennyh form vetrjanoj ospy. STM. 2020; 12 (4): 48-54.

8. Samodova E.A., Kriger L.V, Titova O.V. Bakterial’nye oslozhnenija vetrjanoj ospy u detej. Detskie infekcii. 2015; (3): 56-60.

9. Sergienko E.N. Sovremennyj vzgljad na vetrjanuju ospu u detej. Medicinskie novosti. 2016; 2: 4-8.

10. Skripchenko E. Ju., Lobzin Ju.V., Pal’chik A.B., Ivanova G.P. Nevrologicheskie oslozhnenija i prognoz ih razvitija u detej. Pediatrija. 2016; 95 (2): 14-21.

11. Tkachenko S.A. Kliniko-laboratornaja harakteristika vetrjanoj ospy na sovremennom jetape. Nauchnye stremlenija. 2014; 4 (12): 93-96.

12. Shrestha A.B., Umar T.P., Mohammed Y.A., Aryal M., Shrestha S., Sapkota U.H., Adhikari L., Shrestha S. Association of asthma and herpes zoster, the role of vaccination: A literature review. Immun. Inflamm. Dis. 2022; 10 (11): e718. doi: 10.1002/iid3.718

13. Gershon A.A. Is chickenpox so bad, what do we know about immunity to varicella zoster virus, and what does it tell us about the future? J. Infect. 2017; 74: 27- 33.

14. Gershon A.A., Gershon M.D., Shapiro E.D. Live Attenuated Varicella Vaccine: Prevention of Varicella and of Zoster. The Journal of InfectiousDisiases. 2021; 224: 387-397.

15. Sauerbrei A. Diagnosis, antiviral therapy, and prophylaxis of varicella-zoster virus infections. Eur. J. Clin. Microbiol. Infect. Dis. 2016; 35 (5): 723-734.

16. Wu B.W., Yee M. B., Goldstein R.S. Antiviral Targeting of Varicella Zoster Virus Replication and Neuronal Reactivation Using CRISPR/Cas9 Cleavage of the Duplicated Open Reading Frames 62/71. Viruses. 2022; 14: 378.

17. Bozzola E., Carsetti R., Mortari P.E., Masci M. The link between varicella and immune system: which children will develop acute cerebellitis? Italian Journal of Pediatrics. 2020; 46. https://doi.org/10.1186/s13052-020-00840-5

18. Amlie-Lefond C., Gilden D. Varicella Zoster Virus: A Common Cause of Stroke in Children and Adults. J. Stroke Cerebrovasc. Dis. 2016; 25 (7):1561-1569. doi: 10.1016/j.jstrokecerebrovasdis.2016.03.052

19. Lo Presti C., Curti C., Montana M., Bornet C., Vanelle P. Chickenpox: An update. Med. Mal. Infect. 2019; 49 (1): 1-8. doi: 10.1016/j.medmal.2018.04.395

20. Tommasi C., Breuer J. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses. 2022; 14 (5): 982. doi: 10.3390/v14050982

21. Nyayanit D.A., Chaubal G., Sahay R., Jain S., Shete A., Majumdar T., Shrivastava A., Yadav P. D. Molecular characterization of varicella zoster virus isolated from clinical samples in India. Indian J. Med. Res. 2021; 154 (4): 592-597. doi: 10.4103/ijmr.IJMR_434_19

22. Doki N., Miyawaki S., Tanaka M., Kudo D., Wake A., Oshima K., Fujita H., Uehara T., Hyo R., Mori T., Takahashi S., Okamoto S., Sakamaki H., Kanto Study Group for Cell Therapy. Visceral varicella zoster virus infection after allogeneic stem cell transplantation. Transpl. Infect. Dis. 2013; 15 (3): 314-8. doi: 10.1111/tid.12073

23. Varela F.H., Pinto L.A., Scotta M.C. Global impact of varicella vaccination programs. Hum. Vaccin. Immunother. 2019; 15 (3): 645-657. doi: 10.1080/21645515.2018.1546525

24. Freer G., Pistello M. Varicella-zoster virus infection: natural history, clinical manifestations, immunity and current and future vaccination strategies. New Microbiol. 2018; 41 (2): 95-105.

25. Zhu H., Zhang H., Xu Y., Laššáková S., Korabečná M., Neužil P. PCR past, present and future. Biotechniques. 2020; 69 (4): 317-325. doi: 10.2144/btn2020-0057

26. Hussey H.S., Abdullahi L.H., Collins J.E., Muloiwa R., Hussey G.D., Kagina B.M. Varicella zoster virus-associated morbidity and mortality in Africa: a systematic review protocol. BMJ Open. 2016; 6 (4): e010213. doi: 10.1136/bmjopen-2015-010213

27. Ishino Y., Fukasawa H., Kitamoto S., Nakagami D., Kaneko M., Yasuda H., Furuya R. A survival case of visceral disseminated varicella zoster virus infection in a patient with systemic lupus erythematosus. BMC Nephrol. 2023; 24 (1): 164. doi: 10.1186/s12882-023-03223-0

28. Schmitz J.E., Stratton C.W., Persing D.H., Tang Y.W. Forty Years of Molecular Diagnostics for Infectious Diseases. J. Clin. Microbiol. 2022; 60 (10): e0244621. doi: 10.1128/jcm.02446-21

29. Jouanguy E., Béziat V., Mogensen T.H., Casanova J.L., Tangye S.G., Zhang S.Y. Human inborn errors of immunity to herpes viruses. Curr. Opin. Immunol. 2020; 62: 106-122. doi: 10.1016/j.coi.2020.01.004

30. Gobbi L., Martino F.K., Sgrò E., Nalesso F., Calo’ L.A. Varicella Zoster vaccination in hemodialysis patients: The state of the art. Hum. Vaccin. Immunother. 2023; 19 (3): 2286689. doi: 10.1080/21645515.2023.2286689

31. Lezhnyova V., Davidyuk Y., Mullakhmetova A., Markelova M., Zakharov A., Khaiboullina S., Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol. 2022; 13: 1010605. doi: 10.3389/fimmu.2022.1010605

32. Wang L., Wang M.M., Xu C.D., Wang P.H., You M.Y., Li Z.H., Chen X.M., Liu X.Y., Li X.D., Wang Y.Y., Hu Y.H., Yin D.P. Spatial Dynamics of Chickenpox Outbreaks in Rapidly Developing Regions: Implications for Global Public Health. Biomed. Environ. Sci. 2024; 37 (7): 687-697. doi: 10.3967/bes2024.068

33. Huang L., Zhang S., Zhao T., Cai T., Bu L., Di Z., Lin A. Rational optimization of glycoprotein E (gE)-encoding mRNA for improved Varicella-zoster virus mRNA vaccine development. Emerging Microbes & Infections. 2024; 13 (1): 2392661. https://doi.org/10.1080/22221751.2024.2392661

34. Mahalingam R., Gershon A., Gershon M., Cohen J.I., Arvin A., Zerboni L., Zhu H., Gray W., Messaoudi I., Traina-Dorge V. Current In Vivo Models of Varicella-Zoster Virus Neurotropism. Viruses. 2019; 11 (6): 502. doi: 10.3390/v11060502

35. Al-Turab M., Chehadeh W. Varicella infection in the Middle East: Prevalence, complications, and vaccination. J. Res. Med. Sci. 2018; 23: 19. doi: 10.4103/jrms.JRMS_979_17

36. Otani N., Shima M., Yamamoto T., Okuno T. Effect of Routine Varicella Immunization on the Epidemiology and Immunogenicity of Varicella and Shingles. Viruses. 2022; 14 (3): 588. doi: 10.3390/v14030588

37. Wutzler P., Bonanni P., Burgess M., Gershon A., Sáfadi M.A., Casabona G. Varicella vaccination – the global experience. Expert. Rev. Vaccines. 2017; 16 (8): 833-843. doi: 10.1080/14760584.2017.1343669

38. Ansari R., Rosen L.B., Lisco A., Gilden D., Holland S.M., Zerbe C.S., Bonomo R.A., Cohen J.I. Primary and Acquired Immunodeficiencies Associated With Severe Varicella-Zoster Virus Infections. Clin. Infect. Dis. 2021; 73 (9): e2705-e2712. doi: 10.1093/cid/ciaa1274

39. Thomsen M.M., Tyrberg T., Skaalum K., Carter-Timofte M., Freytag M.R., Norberg P., Helleberg M., Storgaard M., Nielsen H., Bodilsen J., Grahn A., Mogensen T.H. Genetic Variants and Immune Responses in a Cohort of Patients With Varicella Zoster Virus Encephalitis. J. Infect. Dis. 2021; 224 (12): 2122-2132. doi: 10.1093/infdis/jiab254

40. Fukuda Y., Suzuki T., Iwata K.I., Haruta K., Yamaguchi M., Torii Y., Narita A., Muramatsu H., Takahashi Y., Kawada J.I. Nanopore sequencing in distinguishing between wild-type and vaccine strains of Varicella-Zoster virus. Vaccine. 2024; 42 (11): 2927-2932. doi: 10.1016/j.vaccine.2024.03.046


Review

For citations:


Alshimbayeva Z.E., Begaydarova R.Kh., Kadyrova I.A. Varicella virus: natural course, clinical manifestations, immunity, genetic diversity, current and future vaccination strategies. Medicine and ecology. 2025;(1):30-38. (In Russ.) https://doi.org/10.59598/ME-2305-6053-2025-114-1-30-38

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-6045 (Print)
ISSN 2305-6053 (Online)