Spirometry performance and quality criteria AS OF ATS/ERS2019 in an epidemiological study
https://doi.org/10.59598/ME-2305-6053-2025-117-4-153-161
Abstract
Aim. To test the performance and assess the feasibility of spirometric quality criteria of ATS/ERS2019 protocol in an epidemiological study.
Materials and methods. Spirometry was completed in 989 adults (18 years old and older, median age 42 (interquartile range (IQR) 25;55) years), residents of Shymkent selected from the general population after training. Spirometry quality was assessed with a range of criteria, including the difference in forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) between attempts, whereas the predictors of criteria attainment were tested in adjusted regression models.
Results and discussion. Total number of attempts varied from 3 to 23 (median 4, IQR 3;6) and it was independently associated with age, FEV1%, smoking status and educational level. ΔFEV1 median equaled 0.05 l (IQR 0.03;0.09), whereas ΔFVC median was 0.06 (IQR 0.03;0.10). Back extrapolation volume median was 0.07 (IQR 0.05;0.11). End-expiratory flow (EEF) median was 0.16 (IQR 0.09;0.33) l, and was independently associated with age, FEV1, FVC and their ratio, as well as diagnosed COPD. The target EEF value of 0.025 l/s could be attained in only 13 subjects (1%) out of 989.
Conclusions. Overall, high standard of spirometry could be attained with the majority of indicators after the relevant training; however, keeping the expiration till the target end-expiratory flow of 25 ml/s is the greatest challenge and hard to achieve.
About the Authors
D. V. VinnikovKazakhstan
Denis Vladimirovich Vinnikov
050040, Almaty c., al-Farabi ave., 71
Zh. Dairuly
Kazakhstan
050040, Almaty c., al-Farabi ave., 71
I. Yu. Mukatova
Kazakhstan
010000, Astana c., Beibitshilik 49а
A. M. Raushanova
Kazakhstan
050040, Almaty c., al-Farabi ave., 71
Zh. V. Romanova
Kazakhstan
050040, Almaty c., al-Farabi ave., 71
F. M. Turdaly
Kazakhstan
160000, Shymkent c., Mailykozha str.,4
A. E. Kushekbayeva
Kazakhstan
160019, Shymkent c., al-Farabi ave., 1
References
1. Chen S., Kuhn M., Prettner K., Yu F., Yang T., Bärnighausen T., Bloom D.E., Wang C. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: a health-augmented macroeconomic modelling study. Lancet Glob Health. 2023; 11 (8): e1183-e1193. https://doi.org/10.1016/S2214-109X(23)00217-6
2. Culver B.H., Graham B.L., Coates A.L., Wanger J., Berry C.E., Clarke P.K., Hallstrand T.S., Hankinson J.L., Kaminsky D.A., MacIntyre N.R., McCormack M.C., Rosenfeld M., Stanojevic S., Weiner D.J.; ATS Committee on Proficiency Standards for Pulmonary Function Laboratories. Recommendations for a Standardized Pulmonary Function Report. An Official American Thoracic Society Technical Statement. Am. J. Respir. Crit. Care Med. 2017; 196 (11): 1463-1472. https://doi.org/10.1164/rccm.201710-1981ST
3. Diab N., Gershon A.S., Sin D.D., Tan W.C., Bourbeau J., Boulet L.P., Aaron S.D. Underdiagnosis and Overdiagnosis of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2018; 198 (9): 1130-1139. https://doi.org/10.1164/rccm.201804-0621CI
4. Enright P.L., Skloot G.S., Cox-Ganser J.M., Udasin I.G., Herbert R. Quality of spirometry performed by 13,599 participants in the World Trade Center Worker and Volunteer Medical Screening Program. Respir Care. 2010; 55 (3): 303-309.
5. Fortis S., Georgopoulos D., Tzanakis N., Sciurba F., Zabner J., Comellas A.P. Chronic obstructive pulmonary disease (COPD) and COPD-like phenotypes. Front Med (Lausanne). 2024; 11: 1375457. https://doi.org/10.3389/fmed.2024.1375457
6. Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., Oropez C.E., Rosenfeld M., Stanojevic S., Swanney M.P., Thompson B.R. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019; 200 (8): e70-e88. https://doi.org/10.1164/rccm.201908-1590ST
7. Hegewald M.J., Gallo H.M., Wilson E.L. Accuracy and Quality of Spirometry in Primary Care Offices. Ann. Am. Thorac. Soc. 2016; 13 (12): 2119-2124. https://doi.org/10.1513/AnnalsATS.201605-418OC
8. Janssens W., Liu Y., Liu D., Kesten S., Tashkin D.P., Celli B.R., Decramer M. Quality and reproducibility of spirometry in COPD patients in a randomized trial (UPLIFT®). Respir. Med. 2013; 107 (9): 1409-1416. https://doi.org/10.1016/j.rmed.2013.04.0159
9. Lopes A.J. Advances in spirometry testing for lung function analysis. Expert Rev. Respir. Med. 2019; 13 (6): 559-569. https://doi.org/10.1080/17476348.2019.1607301
10. Quanjer P.H., Brazzale D.J., Boros P.W., Pretto J.J. Implications of adopting the Global Lungs Initiative 2012 all-age reference equations for spirometry. Eur. Respir. J. 2013; 42 (4): 1046-1054. https://doi.org/10.1183/09031936.00195512
11. Quanjer P.H., Stanojevic S., Cole T.J., Baur X., Hall G.L., Culver B.H. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. European Respiratory Journal. 2012; 40: 1324-1343.
12. Ruvuna L., Sood A. Epidemiology of Chronic Obstructive Pulmonary Disease. Clin. Chest. Med. 2020; 41 (3): 315-327. https://doi.org/10.1016/j.ccm.2020.05.002
13. Ryu J.Y., Sunwoo Y.E., Lee S.Y., Lee C.K., Kim J.H., Lee J.T., Kim D.H. Chronic Obstructive Pulmonary Disease (COPD) and Vapors, Gases, Dusts, or Fumes (VGDF): A Meta-analysis. COPD. 2015; 12 (4): 374-380. https://doi.org/10.3109/15412555.2014.949000
14. Safiri S., Carson-Chahhoud K., Noori M., Nejadghaderi S.A., Sullman M.J.M., Ahmadian Heris J., Ansarin K., Mansournia M.A., Collins G.S., Kolahi A.A., Kaufman J.S. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019. BMJ. 2022; 378: e069679. https://doi.org/10.1136/bmj-2021-069679
15. Singh D., Agusti A., Anzueto A., Barnes P.J., Bourbeau J., Celli B.R., Criner G.J., Frith P., Halpin D.M.G., Han M., López Varela M.V., Martinez F., Montes de Oca M., Papi A., Pavord I.D., Roche N., Sin D.D., Stockley R., Vestbo J., Wedzicha J.A., Vogelmeier C. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2019. Eur. Respir. J. 2019; 53 (5): 1900164. https://doi.org/10.1183/13993003.00164-2019
16. Stanojevic S., Kaminsky D.A., Miller M.R., Thompson B., Aliverti A., Barjaktarevic I., Cooper B.G., Culver B., Derom E., Hall G.L., Hallstrand T.S., Leuppi J.D., MacIntyre N., McCormack M., Rosenfeld M., Swenson E.R. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022; 60 (1): 2101499. https://doi.org/10.1183/13993003.01499-2021
17. Vinnikov D., Raushanova A., Kyzayeva A., Romanova Z., Tulekov Z., Kenessary D., Auyezova A. Lifetime Occupational History, Respiratory Symptoms and Chronic Obstructive Pulmonary Disease: Results from a Population-Based Study. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 3025- 3034. https://doi.org/10.2147/COPD.S229119
Review
For citations:
Vinnikov D.V., Dairuly Zh., Mukatova I.Yu., Raushanova A.M., Romanova Zh.V., Turdaly F.M., Kushekbayeva A.E. Spirometry performance and quality criteria AS OF ATS/ERS2019 in an epidemiological study. Medicine and ecology. 2025;(4):153-161. (In Russ.) https://doi.org/10.59598/ME-2305-6053-2025-117-4-153-161
JATS XML











