EVALUATION OF MECA AND YYCFG GENE EXPRESSION DYNAMICS IN METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) UNDER THE INFLUENCE OF PHENOLIC COMPOUNDS, BORNEOL AND EXTRACT OF SALVIA STEPPE (SALVIA STEPPOSA DES.-SHOST)
https://doi.org/10.59598/ME-2305-6053-2025-115-2-128-136
Abstract
Introduction. Staphylococcus aureus demonstrates sufficient adaptive potential under external stress conditions, which may determine its key role in the etiology of hospital-acquired infections. The observed exponential growth of strains with multiple antibiotic resistance over the past decades indicates that adaptation mechanisms contribute to the survival and spread of S. aureus under conditions of intensive hospital exposure to antimicrobial agents. This phenomenon significantly complicates the clinical treatment of infections and poses a serious threat to the healthcare system. Despite the active study of changes in the activity of genes associated with antibiotic resistance under various stress conditions, the role of phenolic compounds in the regulation of gene expression in MRSA has been insufficiently studied. In particular, there are practically no data on the effect of phenolic compounds and borneol on the expression of the MecA and YycFG genes, which determines the relevance of this work.
Aim. To evaluate the dynamics of MecA and YycFG gene expression in methicillin-resistant Staphylococcus aureus (MRSA) under the influence of phenolic compounds (rosmarinic, chlorogenic and ferulic acids), borneol and Salvia Stepposa Des. -Shost leaf extract.
Materials and methods. The MICs of the studied compounds were determined using the serial dilution micromethod. To evaluate the effect of the studied compounds, daily MRSA cultures were additionally incubated with the studied compounds at subinhibitory concentrations (1/2 MIC) for 4 hours. Changes in MecA and YycFG expression were analyzed by quantitative PCR (ΔΔCt, log2 Fold Change). GyrB expression was assessed as an endogenous control. Statistical processing included the Kruskal-Wallis, Wilcoxon and Mann-Whitney tests (p=0.05).
Results and discussion. The results showed that phenolic compounds, borneol and Salvia stepposa leaf extract reduced MecA expression by 2.17-5 times (p=0.043) and increased YycFG by 1.84-2.45 times (p=0.043). Rosmarinic and chlorogenic acids showed the greatest activity towards MecA.
Conclusion. Chlorogenic and rosmarinic acids have significant potential to suppress MecA expression in MRSA. Rosmarinic acid reduces MecA expression by 5 times, chlorogenic acid by 4 times. These results allow us to consider the studied compounds as promising candidates for the development of new antimicrobial drugs or adjuvants that enhance the effect of antibiotics. In the future, the synergistic combination of rosmarinic and chlorogenic acids with β-lactams may become an effective tool for overcoming MRSA resistance.
Keywords
About the Authors
I. A. KadyrovaKazakhstan
100008, Karaganda city, Gogolya str., 40
A. D. Bakenova
Kazakhstan
100008, Karaganda city, Gogolya str., 40
A. V. Lavrinenko
Kazakhstan
100008, Karaganda city, Gogolya str., 40
I. A. Belyaev
Kazakhstan
100008, Karaganda city, Gogolya str., 40
G. A. Atazhanova
Kazakhstan
100008, Karaganda city, Gogolya str., 40
Y. K. Levaya
Kazakhstan
100008, Karaganda city, Gogolya str., 40
References
1. Ivanov F.V., Gumilevskij B.Ju. Mikrobiologicheskij monitoring infekcii, svjazannoj s okazaniem medicinskoj pomoshhi. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2023; 12 (138): 1-8.
2. Centers for Disease Control and Prevention. Methicillin-Resistant Staphylococcus Aureus. https://www.cdc.gov/antimicrobial-resistance/media/pdfs/MRSA-508. pdf
3. Kaliyeva S.S. Microbial landscape and antibiotic susceptibility dynamics of skin and soft tissue infections in Kazakhstan 2018 – 2020. Antibiotics. 2022; 11 (5): 659.
4. lynarczyk-Bonikowska B., Kowalewski C., KrolakUlinska A., Marusza W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. International Journal of Molecular Sciences. 2022; 23 (15): 8088. https://doi.org/10.3390/ijms23158088
5. Almagambetov K. H. Molekuljarnaja biologija Staphylococcus aureus. AMZh. 2021 (1). https:// cyberleninka.ru/article/n/molekulyarnaya-biologiyastaphylococcus-aureus
6. Wu S., Huang F., Zhang H., Lei L. Staphylococcus aureus biofilm organization modulated by YycFG twocomponent regulatory pathway. Journal of Orthopaedic Surgery and Research. 2019; 14 (1): 10. https://doi.org/10.1186/s13018-018-1055-z
7. Wu S., Zhang J., Peng Q., Liu Y., Lei L., Zhang H. The Role of Staphylococcus aureus YycFG in Gene Regulation, Biofilm Organization and Drug Resistance. Antibiotics (Basel, Switzerland). 2021; 10 (12): 1555. https://doi.org/10.3390/antibiotics10121555
8. Dawan J., Ahn J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms. 2022; 10 (7): 1385. https://doi.org/10.3390/microorganisms10071385.
9. Levaja Ja.K. Farmacevticheskaja razrabotka gotovoj lekarstvennoj formy na osnove biologicheski aktivnyh veshhestv shalfeja stepnogo. Karaganda: Medicinskij universitet Karagandy; 2023: 153.
10. Badekova K.Zh., Levaja Ja.K., Atazhanova G.A., Zholdasbaev M.E. Biologicheskie svojstva rozmarinovoj kisloty. Farmacija Kazahstana. 2020; 7-8: 29-35.
11. Kernou O.-N., Azzouz Z., Madani K., Rijo P. Application of Rosmarinic Acid with Its Derivatives in the Treatment of Microbial Pathogens. Molecules. 2023; 28 (10): 4243. https://doi.org/10.3390/molecules28104243
12. Kang J., Liu L., Liu Y., Wang X. Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destruction, Biofilm Retardation, and Altered Gene Expression. Journal of Agricultural and Food Chemistry. 2020; 68 (27): 7121-7131. https://doi.org/10.1021/acs.jafc.0c01901
13. Li G., Qiao M., Guo Y., Wang X., Xu Y., Xia X. Effect of Subinhibitory Concentrations of Chlorogenic Acid on Reducing the Virulence Factor Production by Staphylococcus aureus. Foodborne Pathogens and Disease. 2014; 11 (9): 677-683. https://doi.org/10.1089/fpd.2013.1731
14. Leite-Sampaio N.F., Gondim C.N.F.L., Martins R.A.A., Siyadatpanah A., Norouzi R., Kim B., Sobral-Souza C.E., Gondim G.E.C., Ribeiro-Filho J., Coutinho H.D.M. Potentiation of the Activity of Antibiotics against ATCC and MDR Bacterial Strains with (+)-α-Pinene and (-)-Borneol. BioMed Research International. 2022; 2022: 8217380. https://doi.org/10.1155/2022/8217380
15. ISO 20776-1:2019. Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Geneva: International Organization for Standardization. 2019: 11.
16. Wang S., Kang O. H., Kwon D. Y. Bisdemethoxycurcumin Reduces Methicillin-Resistant Staphylococcus aureus Expression of VirulenceRelated Exoproteins and Inhibits the Biofilm Formation. Toxins. 2021; 13 (11): 804. https://doi.org/10.3390/toxins13110804.
17. Kadyrova I.A., Barkhanskaya V.I. Analysis of the dynamics of gene expression in patients with acute COVID-19 and in recovery period. Medicine and ecology. 2024; 2: 48-56. https://doi.org/10.59598/ME-2305-60452024-111-2-48-56
18. Sihto H.-M., Tasara T., Stephan R., Johler S. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiology Letters. 2014; 356 (1): 134-140. https://doi.org/10.1111/1574-6968.12491
19. Statisty: Бесплатное онлайн-приложение для статистического анализа данных. https://statisty.app/
20. Wolska-Gębarzewska M., Międzobrodzki J., Kosecka-Strojek M. Current types of staphylococcal cassette chromosome mec (SCCmec) in clinically relevant coagulase-negative staphylococcal (CoNS) species. Critical Reviews in Microbiology. 2024; 50 (6): 1020-1036.
21. D'jachkova V.S., Bazhukova T.A. Mehanizmy rezistentnosti mikroorganizmov k β-laktamnym antibiotikam. Zhurnal mikrobiologii, jepidemiologii i immunobiologii. 2014; 4. https://cyberleninka.ru/article/n/mehanizmy-rezistentnosti-mikroorganizmov-k-laktamnymantibiotikam
22. Villanueva M., Roch M., Lasa I., Renzoni A., Kelley W. L. The Role of ArlRS and VraSR in Regulating Ceftaroline Hypersusceptibility in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel, Switzerland). 2021; 10 (7): 821. https://doi.org/10.3390/antibiotics10070821
23. Gostev V.V., Punchenko O.E., Sidorenko S.V. Sovremennye predstavlenija ob ustojchivosti Staphylococcus aureus k beta-laktamnym antibiotikam. KMAH. 2021; 4. https://cyberleninka.ru/article/n/sovremennye-predstavleniya-ob-ustoychivostistaphylococcus-aureus-k-beta-laktamnym-antibiotikam
24. Abaturov A.E., Krjuchko T.A. Medikamentoznoe ingibirovanie aktivnosti bakterial'nyh dvuhkomponentnyh sistem reguljacii. Zdorov'e rebenka. 2018; 13 (3): 326-333.
Review
For citations:
Kadyrova I.A., Bakenova A.D., Lavrinenko A.V., Belyaev I.A., Atazhanova G.A., Levaya Y.K. EVALUATION OF MECA AND YYCFG GENE EXPRESSION DYNAMICS IN METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) UNDER THE INFLUENCE OF PHENOLIC COMPOUNDS, BORNEOL AND EXTRACT OF SALVIA STEPPE (SALVIA STEPPOSA DES.-SHOST). Medicine and ecology. 2025;(2):128-136. (In Russ.) https://doi.org/10.59598/ME-2305-6053-2025-115-2-128-136