Preview

Medicine and ecology

Advanced search

DIAGNOSTIC INDICATORS OF GENETIC FACTORS IN THE ABILITY TO CLASSIFY PATIENTS WITH CAROTID ARTERY REMODELING FROM CONDITIONAL Y HEALTHY ON THE BASIS OF MACHINE LEARNING

Abstract

A model was obtained to differentiate between patients with carotid artery remodeling and conventionally healthy people based on machine learning using genetic data from the Kazakh population For the period 2018-2020, 561 study participants were recruited, of which 357 had PCA and 204 were conditionally healthy. Genotyping was performed using QuantStudio TM 12K Flex Real-Time PCR technology (Applied Biosystems) using a panel of 118 polymorphisms. After the quality control procedure, 43 polymorphisms were excluded from further analysis. The results of genotyping of 75 polymorphisms were used to build a binary classification model in the form of a «decision tree» based on the Fast-and-frugal trees (FFTs) algorithm. The best model of 5 polymorphisms had 52% sensitivity, 64% specificity, and 56% accuracy in the ability to distinguish between RSA patients and conventionally healthy people based on genetic data.

About the Authors

V. V. Benberin
RSE «Hospital of the Medical Center of the Administrative Department of the President of the Republic of Kazakhstan»
Kazakhstan


T. A. Voshchenkova
RSE «Hospital of the Medical Center of the Administrative Department of the President of the Republic of Kazakhstan»
Kazakhstan


R. Zh. Karabayeva
RSE «Hospital of the Medical Center of the Administrative Department of the President of the Republic of Kazakhstan»
Kazakhstan


A. S. Sibagatova
RSE «Hospital of the Medical Center of the Administrative Department of the President of the Republic of Kazakhstan»
Kazakhstan


D. B. Babenko
NP JSC «Karaganda medical university»
Kazakhstan


A. A. Turmukhambetova
NP JSC «Karaganda medical university»
Kazakhstan


References

1. Белова Л. А. Гипертоническая энцефалопатия: клинико-патогенетические подтипы, классификация, диагностика /Л. А. Белова, В. В. Машин. - Ульяновск: УлГУ, 2010. - 210 с.

2. Информация здравоохранения для Европейского региона / https://gateway.euro. who.int/ru/hfa-explorer/2020.

3. Каргабаева Б. А. Здоровье населения Республики Казахстан и деятельность организаций здравоохранения /Б. А. Каргабаева, Ж. К. Алдажарова, А. А. Кенесова и др. http:// www.rcrz.kz/index.php/ru/? option=com_content&view=artide&id=973б

4. Шумилина М. В. Комплексная ультразвуковая диагностика патологии периферических сосудов. Учеб.-метод. рук. - М.: НЦССХ им. А.Н. Бакулева РАМН, 2012. - 384 с.

5. GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes /N. Franceschini, C. Giambartolomei, P. S. de Vries et al. //Nat. Commun. - 2018. - №9. - 5141P.

6. Williams B. Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH) /B. Williams, G. Mancia //Eur. Heart J. - 2018. - №39. - P. 3021-3104.


Review

For citations:


Benberin V.V., Voshchenkova T.A., Karabayeva R.Zh., Sibagatova A.S., Babenko D.B., Turmukhambetova A.A. DIAGNOSTIC INDICATORS OF GENETIC FACTORS IN THE ABILITY TO CLASSIFY PATIENTS WITH CAROTID ARTERY REMODELING FROM CONDITIONAL Y HEALTHY ON THE BASIS OF MACHINE LEARNING. Medicine and ecology. 2020;(3):63-66. (In Russ.)

Views: 192


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-6045 (Print)
ISSN 2305-6053 (Online)