Preview

Medicine and ecology

Advanced search

HP1 protein as a key regulator of microphase separation of heterochromatin

https://doi.org/10.59598/ME-2305-6053-2025-117-4-39-47

Abstract

Proteins of the HP1 family (Heterochromatin Protein 1) play a key role in the organization of the three-dimensional structure of the genome, participating in the stabilization of heterochromatin and the formation of spatial compartments of the nucleus. For a long time, it was believed that HP1 realizes its functions through the mechanisms of liquid-phase separation (LLPS), but recent data indicate a more relevant role of microphase separation leading to the formation of heterochromatin nanodomains.

The review presents current concepts of the mechanisms of chromatin compartmentalization with the participation of HP1, including its binding to H3K9me2/3-modified nucleosomes , the ability to dimerize and form stable internucleosomal interactions. Particular attention is paid to heterochromatin nanodomains as structural units of microphase separation, their initiation by ATRX, PAX3/9 and ADNP proteins, as well as the thermodynamic parameters regulating their size and stability. The differences between the microphase separation and collapsed globule models , the role of HP1 in embryonic development and cell differentiation, and the involvement of histone H1 and other factors in the maintenance of B-compartments are discussed. The presented data highlight the importance of HP1 in shaping the nuclear epigenetic landscape and open up prospects for further biophysical and biomedical research in the field of regulation of genomic architecture.

About the Authors

T. M. Saliev
Asfendiyarov Kazakh National Medical University NC JSC
Kazakhstan

Timur Muidinovich Saliev

050000, Almaty c., Tole Bi str., 94



P. B. Singh
School of Medicine, Nazarbayev University
Kazakhstan

010000, Astana c., Kabanbai Batyr ave., 53



References

1. Messina G., Celauro E., Marsano R.M., Prozzillo Y., Dimitri P. Epigenetic Silencing of PElement Reporter Genes Induced by Transcriptionally Active Domains of Constitutive Heterochromatin in Drosophila melanogaster. Genes (Basel). 2022; 14 (1): 12. https://doi.org/10.3390/genes14010012

2. Singh P.B., Belyakin S.N., Laktionov P.P. Biology and Physics of Heterochromatin-Like Domains/Complexes. Cells. 2020; 9 (8): 1881. https://doi.org/10.3390/cells9081881

3. Singh P.B., Newman A.G. On the relations of phase separation and Hi-C maps to epigenetics. R. Soc. Open Sci. 2020; 7 (2):191976. https://doi.org/10.1098/rsos.191976

4. Grewal S.I.S. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell. 2023; 83 (11): 1767-1785. https://doi.org/10.1016/j.molcel.2023.04.020.

5. Keenen M.M., Brown D., Brennan L.D., Renger R., Khoo H., Carlson C.R., Huang B., Grill S.W., Narlikar G.J., Redding S. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. Elife. 2021; 10: e64563. https://doi.org/10.7554/eLife.64563

6. Packiaraj J., Thakur J. DNA satellite and chromatin organization at mouse centromeres and pericentromeres. Genome Biol. 2024; 25 (1): 52. https://doi.org/10.1186/s13059-024-03184-z

7. Phan T.M., Kim Y.C., Debelouchina G.T., Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. Elife. 2024; 12: RP90820. https://doi.org/10.7554/eLife.90820

8. Qin W., Stengl A., Ugur E., Leidescher S., Ryan J., Cardoso M.C., Leonhardt H. HP1β carries an acidic linker domain and requires H3K9me3 for phase separation. Nucleus. 2021; 12 (1): 44-57. https://doi.org/10.1080/19491034.2021.1889858

9. González J., Bosch-Presegué L., Marazuela-Duque A., Guitart-Solanes A., EspinosaAlcantud M., Fernandez A.F., Brown J.P., Ausió J., Vazquez B.N., Singh P.B., Fraga M.F., Vaquero A. A complex interplay between H2A.Z and HP1 isoforms regulates pericentric heterochromatin. Front. Cell. Dev. Biol. 2023; 11: 1293122. https://doi.org/10.3389/fcell.2023.1293122

10. Di Stefano M., Nützmann H.W., Marti-Renom M.A., Jost D. Polymer modelling unveils the roles of heterochromatin and nucleolar organizing regions in shaping 3D genome organization in Arabidopsis thaliana. Nucleic Acids Res. 2021; 49 (4): 1840-1858. https://doi.org/10.1093/nar/gkaa1275

11. .Erdel F., Rippe K. Formation of Chromatin Subcompartments by Phase Separation. Biophys J. 2018; 114 (10): 2262-2270. https://doi.org/10.1016/j.bpj.2018.03.011

12. Singh P.B., Newman A.G. HP1-Driven Micro-Phase Separation of Heterochromatin-Like Domains/Complexes. Epigenet Insights. 2022; 15: 25168657221109766. https://doi.org/10.1177/25168657221109766

13. .Schoelz J.M., Riddle N.C. Functions of HP1 proteins in transcriptional regulation. Epigenetics Chromatin. 2022; 15 (1): 14. https://doi.org/10.1186/s13072-022-00453-8

14. Zenk F., Zhan Y., Kos P., Löser E., Atinbayeva N., Schächtle M., Tiana G., Giorgetti L., Iovino N. HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature. 2021; 593 (7858): 289-293. https://doi.org/10.1038/s41586-021-03460-z

15. Belaghzal H., Borrman T., Stephens A.D., Lafontaine D.L., Venev S.V., Weng Z., Marko J.F., Dekker J. Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics. Nat. Genet. 2021; 53 (3): 367-378. https://doi.org/10.1038/s41588-021-00784-4

16. Ahmad H., Chetlangia N., Prasanth S.G. Chromatin's Influence on Pre-Replication Complex Assembly and Function. Biology (Basel). 2024; 13 (3): 152. https://doi.org/10.3390/biology13030152

17. Yusufova N., Kloetgen A., Teater M., Osunsade A., Camarillo J.M., Chin C.R., Doane A.S., Venters B.J., Portillo-Ledesma S., Conway J., Phillip J.M., Elemento O., Scott D.W., Béguelin W., Licht J.D., Kelleher N.L., Staudt L.M., Skoultchi A.I., Keogh M.C., Apostolou E., Mason C.E., Imielinski M., Schlick T., David Y., Tsirigos A., Allis C.D., Soshnev A.A., Cesarman E., Melnick A.M. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature. 2021; 589 (7841): 299-305. https://doi.org/10.1038/s41586-020-3017-y

18. Doyle E.J., Morey L., Conway E. Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation. Front. Cell. Dev. Biol. 2022; 10: 986319. https://doi.org/10.3389/fcell.2022.986319

19. Singh P.B., Belyakin S.N., Laktionov P.P. Biology and Physics of Heterochromatin-Like Domains/Complexes. Cells. 2020; 9 (8):1881. https://doi.org/10.3390/cells9081881

20. Thorn G.J., Clarkson C.T., Rademacher A. DNA sequence-dependent formation of heterochromatin nanodomains. Nat. Commun. 2022; 13: 1861. https://doi.org/10.1038/s41467-022-29360-y

21. Falk M., Feodorova Y., Naumova N., Imakaev M., Lajoie B.R., Leonhardt H., Joffe B., Dekker J., Fudenberg G., Solovei I., Mirny L.A. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature. 2019; 570 (7761): 395-399. https://doi.org/10.1038/s41586-019-1275-3

22. Shao Z., Lu J., Khudaverdyan N. Multilayered heterochromatin interaction as a switch for DIM2-mediated DNA methylation. Nat. Commun. 2024; 15: 6815. https://doi.org/10.1038/s41467-024-51246-4


Review

For citations:


Saliev T.M., Singh P.B. HP1 protein as a key regulator of microphase separation of heterochromatin. Medicine and ecology. 2025;(4):39-47. (In Russ.) https://doi.org/10.59598/ME-2305-6053-2025-117-4-39-47

Views: 33

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-6045 (Print)
ISSN 2305-6053 (Online)