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Aim. To summarize existing approaches to the use of artificial intelligence in the diagnosis of heart failure, to
characterize the algorithms and models employed, to describe the types of medical data used (ECG, echocardiography,
EMR, CT/MRI, angiography, wearables), to evaluate model performance (accuracy, AUC, sensitivity/specificity), and to
assess feasibility and prospects for clinical implementation — with particular attention to the situation and challenges in
Kazakhstan.

Materials and methods. Systematic searches of PubMed, Scopus, Web of Science, IEEE Xplore and Google
Scholar (2015 — 2025) identified peer-reviewed English and Russian studies on Al applications for heart failure diagnosis;
two reviewers independently screened articles, extracted data and assessed quality, and results from 60 eligible studies
were synthesized narratively with quantitative pooling where appropriate.

Results and discussion. Across 60 eligible studies (2015 — 2025), Al applied to ECG, echocardiography, EMRs,
imaging and wearable data demonstrated diagnostic accuracy typically between 85-95% (AUCs up to 0.97); ECG-
based algorithms reliably detected HFrEF, Al-assisted echocardiography improved segmentation and reduced operator
dependence, multimodal models enhanced prediction of therapy response (including CRT), while implementation in
Kazakhstan remains nascent due to infrastructure and data-access limitations.

Conclusion. Artificial intelligence is a promising direction in heart-failure diagnostics that can enhance the
accuracy, timeliness and personalization of clinical decisions. For large-scale clinical adoption — especially in Kazakhstan
— prospective validation, standardized protocols, local representative datasets, robust digital infrastructure and workforce

training are required.
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INTRODUCTION

Heart failure (HF) continues to be a major global health
problem, affecting more than 64 million people worldwide
and is characterized by high morbidity and mortality. Heart
failure is the leading cause of hospitalization in people over
65 years of age [1, 2].

Heart failure is a complex, multifaceted syndrome con-
sisting of cardinal symptoms (eg, dyspnea, ankle swelling,
and fatigue) that may be accompanied by signs (eg, ele-
vated jugular venous pressure, pulmonary crackles, and
peripheral edema). It results from structural and/or func-
tional changes in the heart that result in elevated intrac-
ardiac pressure and/or inadequate cardiac output at rest
and/or during exercise. Diagnosis and treatment of HF are
particularly challenging due to its diverse presentation and
variability in patient response. Despite significant advanc-
es in medical research and technology, traditional methods
for diagnosing HF often prove ineffective, primarily due to
the multifactorial nature of the disease. Over the course
of the disease, patients with HF undergo numerous inva-
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sive and noninvasive diagnostic tests, generating large vol-
umes of medical data. The size, complexity, and dynamic
nature of big data can pose challenges to traditional sta-
tistical methods. In this changing landscape, artificial in-
telligence (Al) offers promising new avenues to transform
HF diagnostics. Using advanced algorithms and machine
learning techniques, Al can improve diagnostic accuracy,
facilitate early detection, and support clinical decision mak-
ing. These technological innovations have the potential to
significantly address gaps in current diagnostic approach-
es and improve overall HF management, ultimately leading
to better patient outcomes and more efficient healthcare
delivery [2, 3].

Artificial intelligence (Al) is a computing program that
has the ability to process functions that are considered typ-
ical of human intelligence, such as identifying certain pat-
terns or images, programming, recognizing sounds or ob-
jects, and solving problems [2, 5]. Al provides a device with
the ability to make autonomous decisions based on previ-
ously collected data. Currently, research projects are using
large databases to develop an Al model that will be trained
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based on additional data from several sources: cardiovas-
cular data, including cardiac imaging, cardiac biomarkers,
electrocardiography, and clinical report information. Based
on early prediction of a patient’s HF risk, the Al will provide
patients with personalized recommendations for medica-
tion, diet, exercise, pacemakers, and cardiac resynchroni-
zation therapy , and eventually ambulatory monitoring [16].

To better understand the role of Al in everyday clinical
practice, healthcare professionals need to be familiar with
some fundamental Al terms. In the medical field, the vast
maijority of applications primarily focus on the learning as-
pect, using machine learning (ML) as the underlying meth-
odology. ML encompasses a set of algorithms that acquire
the ability to achieve a goal without the need for strict and
specific programming [17].

The aim of this review was to summarize existing ap-
proaches to the use of artificial intelligence in the diagnosis
of heart failure, characterize the algorithms used, types of
medical data, the effectiveness of models and consider the
prospects for their implementation in clinical practice [6].

MATERIALS AND METHODS

The search for literary sources was carried out in the
PubMed, Scopus, Web of Science, IEEE Xplore and Goo-
gle Scholar databases using the following keywords: artifi-
cial intelligence, machine learning, heart failure, diagnosis,
echocardiography, ECG, deep learning.

Inclusion criteria were the following:

° publications in English or Russian, published
from 2015 to 2025;

° peer-reviewed articles containing primary data
on the use of Al for the diagnosis of heart failure;

° studies that include assessment of the diagnostic
accuracy of models (e.g. AUC, sensitivity, specificity) [8].

Reviews without original data, publications devoted
only to outcome prediction, and articles with insufficient
methodological transparency were excluded. As a result of
the analysis, 60 articles were selected that met the criteria
[71.

Al models have been applied to different types of med-
ical information:

° Electrocardiogram (ECG): data from a single-mo-
ment or long-term recording of the heart rhythm;

° Echocardiography: video and stillimages used to
assess contractile function;

° Electronic medical records (EMR): structured
clinical data, laboratory parameters;

° CT/MRI images of the heart: visualization of mor-
phological changes;

° CAG: coronary angiography with artificial intelli-
gence integration;

° SRT: application of machine learning algorithms
to assess response to cardiac resynchronization therapy;

° Data from wearable devices: long-term monitor-
ing of heart rate, rhythm, activity [9].

Most studies used the following methods:

° Deep convolutional neural networks (CNN) — for
image and ECG analysis;

° Decision trees and gradient boosting (e.g. XG-
Boost) — when working with tabular EHR data;
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° Time series models (e.g. LSTM) — for analyzing
sequences of biosignals;

° Combined architectures (multimodal Al systems)
— combining multiple data sources [10].

In many publications, Al models have demonstrated
high quality scores:

1. accuracy: from 85 to 95%;

2. area under the curve (AUC): from 0.88 to 0.97;

3. sensitivity and specificity: often exceeded 90% when
using ECG and echocardiography [11].

Examples:

° The ECG-based model achieved an AUC of 0.93
in detecting reduced ejection fraction [11];

° Algorithms for echocardiography analysis pro-
vided accurate classification of HF with preserved and re-
duced ejection fraction [2];

° The use of EHR and laboratory data made it pos-
sible to predict HF long before clinical manifestation [12].

RESULTS

Diagnosis of heart failure. The diagnosis of HF de-
pends on the patient’s history, clinical examination, and
interpretation of imaging and laboratory results. Late di-
agnosis may result in delayed initiation of optimal medi-
cal treatment, complications, and potentially preventable
deaths or rehospitalizations that could have been pre-
vented if appropriate treatment had been initiated earlier
and in full [18]. Current studies using Al-based models to
improve HF diagnosis include multiple data sources such
as electrocardiograms (ECG), echocardiography, radiol-
ogy results, and electronic medical record (EMR) data
[1,2,3,4]. These studies have demonstrated impressive
performance estimates when using these sources to build
big data databases. In the study by Masetic et al., ECG
signals from two databases were used to build a model
using the random forest method [2]. In both databases, the
algorithms demonstrated high accuracy, with HF detec-
tion rates ranging from 95% to 100%. Using convolutional
neural networks (CNNs), both experiments demonstrated
outstanding validity, also ranging from 95% to 100% using
the random forest approach. However, the aforementioned
datasets were limited to the subset of HF patients, as they
did not include patients with preserved ejection fraction
(HFpEF) [19].

Better validation of the deep learning method in HF diag-
nosis is expected after completion of the EAGLE (ECG-AI-
guided screening for low ejection fraction, NCT04000087)
trial [2,4]. A deep learning algorithm using a 12-lead ECG
was developed and implemented in the electronic medi-
cal record to screen for HF with reduced ejection fraction
(HFrEF), while a subsequent confirmatory echocardiogram
will guide diagnosis and therapy. This will be one of the first
attempts to evaluate the practical utility of Al through pro-
spective evaluation in real-world scenarios [20].

Chest radiography is usually the initial imaging modality
because it is accessible, noninvasive, and helps differentiate
between cardiac and pulmonary causes of dyspnea. Celik et
al. analyzed chest radiographs of 10,100 outpatients using
a convolutional neural network-based artificial intelligence
(Qxr) algorithm as a diagnostic tool [3, 6]. Chest radiographs
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with CTR > 0.5 and bilateral pleural effusion were flagged
as potential HF radiographs. Eligible patients underwent
confirmatory tests to establish or exclude the diagnosis of
HF. There were also subjects not flagged as potential HF
patients who were randomly selected and evaluated for the
diagnosis of HF. Overall, the algorithm demonstrated a pos-
itive predictive value of 77% and a negative predictive value
of 91%, performing well even in diagnosing HFpEF. Thus,
54% of diagnosed patients had HFpEF [21].

Echocardiography based on artificial intelligence.
Echocardiography is widely used for various diagnostic
purposes, from screening to cardiovascular risk stratifi-
cation. Modern artificial intelligence (Al) technologies are
increasingly used at all stages of the echocardiographic
process: from image acquisition to segmentation and inter-
pretation. One of the key areas is the automation of image
acquisition, classification and segmentation [22]. Tradition-
al echocardiographic imaging requires manual adjustment
and skillful maneuvering of the ultrasound transducer to
obtain high-quality images in various projections. This pro-
cess is not only labor-intensive, but also subject to vari-
ability depending on the operator’s level of training [23].
Echocardiographic robots and automated systems with
Al are aimed at optimizing this process. They are able to
automatically aim the transducer, recognize anatomical
structures and record the required projections, which im-
proves the consistency of studies, reduces dependence
on personnel qualifications and accelerates the receipt of
diagnostically significant data [24]. Al integration also fa-
cilitates automatic segmentation of cardiac structures and
interpretation of acquired data in real time, facilitating clini-
cal decision-making and improving diagnostic accuracy. In
terms of acquired image quality, He et al. designed a study
including 3495 echocardiographic reports to evaluate Al-
based LVEF assessment [1, 2]. They found that the initial
LVEF assessment by Al was as good as or better than the
assessment by functional diagnostic physicians, suggest-
ing that Al may improve the efficiency and effectiveness of
cardiac function assessment.

In a prospective study mainly aimed at the reliability of
Al-based diagnostics, Chen et al. evaluated 80 hospital-
ized patients with acute left ventricular HF. A deep convo-
lutional neural network (DCNN) algorithm model was built
to customize image processing [1, 3]. The patients were
equally divided into a control group undergoing routine
echocardiography and an observation group undergoing
echocardiography based on the DCNN model. After com-
paring the two groups, it was noted that the Al-based as-
sessment demonstrated higher diagnostic accuracy and
was associated with lower readmission and mortality rates.
However, since the sample size was small, there was no
statistical significance characterizing all the results [25].

Moreover, echocardiographic assessment using Al
may help to address the unmet need for accurate diagno-
sis in a large heterogeneous group of patients with HFpEF.
A recent study from Stanford University used a deep learn-
ing model (Python, version 3.8.5) to automate echocardio-
graphic assessment of patients, focusing on left ventricular
size measurement [2, 6]. Photographs and videos demon-
strating left ventricular hypertrophy were computationally
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evaluated by a 3D convolutional neural network to distin-
guish between causes of hypertrophy. The model was able
to reliably identify cardiac amyloidosis and hypertrophic
cardiomyopathy from other causes of LVH [26].

Automated view classification and segmentation are
advanced applications of Al in echocardiography. Automat-
ed view classification refers to the use of Al algorithms to
automatically identify and categorize echocardiographic
views. Zhang et al. presented a fully automated echocar-
diographic interpretation pipeline that includes 23 view clas-
sifications [27]. Zhu et al. developed a deep residual CNN
to automatically identify multiple contrast and non-contrast
echocardiographic views, including LV parasternal short
axis, apical 2-, 3-, and 4-chamber views. In the test dataset,
the overall classification accuracy is 99.1%. Furthermore,
these technologies can improve intra- and inter-observer
variability. Christensen et al. developed a basic vision lan-
guage model for echocardiography called EchoCLIP. It can
learn the relationship between cardiac ultrasound images
and expert cardiologist interpretations in a wide range of
patients [28]. The results showed high accuracy in assess-
ing cardiac function and identifying implanted intracardi-
ac devices. However, one of the major limitations of this
work is the use of an image encoder instead of a video
encoder when echocardiography videos contain important
motion-based information. Ouyang et al. developed the
DL-EchoNet-Dynamic algorithm using 10,030 echocardi-
ography videos. 56 The accuracy of EchoNet-Dynamic in
assessing LVEF and classifying patients with HF was com-
parable to that of experienced cardiologists. The Al-based
algorithm incorporated information from multiple cardiac
cycles and accurately classified HFrEF (area under the
curve [AUC] 0.97). Lau et al. proposed 2 DL-based echo-
cardiogram interpretation models, DROID-LA (left atrium)
and DROID-LV, to automate the assessment of standard
LA and LV structure and function measurements [29]. One
of the limiting factors in the accuracy of projection classifi-
cation is speckle noise and aliasing. Kusunose et al test-
ed 2 types of input methods for image classification using
DL. 50 The best model classified video projections with an
overall test accuracy of 98.1% in an independent cohort.
The results of these studies served as a basis for Al-assist-
ed echocardiography segmentation and interpretation [3].

From the above, it is clear that Al-assisted echocar-
diogram interpretations can be applied retrospectively to
echocardiographic data to improve the detection of rela-
tively rare findings or early signs of dysfunction that may
escape the attention of human interpreters. Measurements
can be fully automated without losing diagnostic reliability
at the same time. An automated approach to echocardio-
gram interpretation has the potential to increase the avail-
ability of echocardiography by moving cardiac assessment
to primary care settings and remote rural areas, thereby
making it more widely available [30].

ECG with artificial intelligence. The ECG is a cost-ef-
fective, non-invasive diagnostic tool that has stood the test
of time in clinical medicine for more than a century after
its introduction. Efforts to automate ECG interpretation us-
ing rule-based algorithms have been ongoing for decades
due to its reproducible, standardized format [31]. Heart
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rate variability refers to the change in successive RR inter-
vals of the cardiac cycle, reflecting the function of the au-
tonomic nervous system. The relationship between heart
rate variability and HF is one of the key research topics
in the field of HF. Most of these studies obtain data from
publicly available ECG databases and use Al algorithms to
differentiate healthy individuals from HF patients. The built
models consistently demonstrate excellent performance.
In 2014, Liu and colleagues used a support vector machine
classifier with 3 custom heart rate variability features to de-
velop a congestive HF classification model that achieved
100% accuracy, sensitivity, and specificity [3, 4]. In 2019,
a study used a DL method with long short-term memory
to identify patients with congestive HF. ECG data from 5
publicly available databases were used for training and
testing. Although the model performance in such studies
seems promising, the main focus is on improving ML meth-
ods. These algorithms often rely on a large number of heart
rate variability parameters, which increases the complexity
of the model. In addition, the sample sizes of the selected
databases were relatively small, which limits their further
application in clinical practice [32].

Cho et al. obtained 39,371 12-lead ECG results from
17,127 patients and used a CNN model to detect HFrEF.
In both internal and external validation cohorts, the AUC
for HFrEF detection was 0.913 and 0.961, respectively [5,
9]. The study provides interpretable model performance. In
addition, heart rate, QT interval, QRS duration, and T-ax-
is were highly correlated with the model. However, limit-
ed availability of digitized and well-labeled ECG data and
open-source datasets may limit the development of Al al-
gorithms [33].

Al-enabled MRI. Al is poised to transform the field of
cardiovascular magnetic resonance imaging (MRI) by ad-
dressing its traditional limitations such as long examination
times, high costs, and the need for expert manual review.
By automating complex image processing and improving
diagnostic accuracy, Al can significantly improve the effi-
ciency and accessibility of MRI in assessing HF [6, 10].

Kucukseymen et al. developed a supervised ML mod-
el to predict HF hospitalization in HFpEF patients using
non-contrast MRI imaging. The study compared a base-
line clinical model with an enhanced model using the XG-
Boost algorithm, showing that the machine learning model
significantly improved the prediction accuracy (AUC: 0.81
vs. 0.64). However, this study was limited by its retrospec-
tive nature and relatively small sample size. Lehmann et
al. proposed an Al-enhanced MRI imaging method for the
diagnosis of cardiovascular disease classification and di-
astolic filling pressure. A total of 6936 patients were an-
alyzed, and 4390 were included in the final cohort. The
Al models demonstrated high accuracy in predicting var-
ious parameters related to cardiovascular diseases [34].
The Al models could help classify diseases and predict
LV end-diastolic pressure, adding value to MRI imaging.
The study highlights the potential of Al-assisted MRI to
improve non-invasive cardiac assessments, suggesting
practical applications for cardiac function assessment and
HF diagnosis. The development of a cross-modality auto-
encoder framework using an unsupervised ML algorithm to
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integrate myocardial structural information from MRI and
myoelectric information from ECG for a holistic view of car-
diovascular health is ongoing [7, 11].

Coronary angiography using artificial intelligence.
One of the causes of end-stage HF is coronary artery dis-
ease. The gold standard for diagnosing coronary artery
disease is coronary angiography. In the field of coronary
angiography, Al has demonstrated potential in assisting in
image acquisition, interpretation, and risk stratification.

Avram et al. used neural networks to develop a fully
automated coronary angiography interpretation and steno-
sis scoring system for interpreting angiographic coronary
artery stenosis. The coronary angiography interpretation
and stenosis scoring system is a pipeline of several deep
neural network algorithms. A total of 13,843 angiographic
studies were used in the training set [8, 10]. The algorithms
were validated internally and externally, with positive pre-
dictive value, sensitivity, and F1-score reaching >90% for
projection angle detection and 93% for left/right coronary
artery angiogram detection. The coronary angiography in-
terpretation and stenosis scoring system exhibits an AUC
of 0.86 for predicting stenosis in obstructive coronary ar-
tery disease. However, this work was limited by one no-
table drawback. The authors used training labels derived
from physician visual assessment and clinically derived
stenosis values [35].

Monitoring and control of the heating system using
sensors. With continuous technological advancements,
sensors have become an integral part of our daily lives, play-
ing a role in almost every common application we encoun-
ter. The types of sensors used in cardiovascular research
are hemodynamic and biochemical sensors [3]. In the for-
mer category, CardioMEMS™, an implantable pulmonary
artery pressure monitoring device, can help prevent HF
decompensation, thereby significantly reducing the num-
ber of HF hospitalizations [2]. The wearable sensor was
implanted on the intra-atrial septum of patients with HFrEF
or HFuskEF . LA pressure management therapy, based on
daily measurements, allowed the physician to self-monitor
the patient’s condition and resulted in a reduction in de-
compensation events and a significant decrease in mean
left atrial pressure [1, 2]. Biochemical sensors are devices
that act as transducers, taking biological fluids as input and
providing valuable data regarding the concentration of cer-
tain components and plasma volume status [1, 4]. During
an invasive assessment of patients with HF, a dedicated
sensor designed to measure both venous oxygen satura-
tion and right ventricular (RV) pressure was integrated. This
method has shown significant promise for potential use in
future HF patients, as it can assess two critical parame-
ters with a single sensor [3]. Another respiratory parameter
that can provide valuable information about the status of a
patient with HF is minute ventilation. Identifying a person
with hyperventilation can help as an early indicator of HF
decompensation and also ensure timely treatment [1]. The
combination of wearable sensors with ML analytics has the
potential to improve outcomes. In a recent study known
as the LINK-HF (Long-Term Non-Invasive Multi-Sensor
Remote Monitoring to Predict Heart Failure Exacerbation)
study, ML analytics demonstrated that remotely collected
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monitoring data obtained non-invasively could predict HF
readmission with 87.5% sensitivity and 85% specificity [3].
Mobile apps incorporating ML algorithms could improve HF
care by motivating patients take preventive measures and
to high adherence to therapy [36].

Using machine learning to predict response to
cardiac resynchronization therapy. Howell et al. want-
ed to create a prediction model for short-term response
to cardiac resynchronization therapy (CRT) to identify
those HF patients who are suitable for early CRT implan-
tation. A total of 741 patients with NYHA llI-IV HF and EF
< 35% pooled in the SMART-AV trial were considered and
multiple variables such as clinical, electrocardiographic,
echocardiographic and biomarker characteristics were
provided for eight different ML models [8, 12]. The mod-
el achieved prediction of CRT response, with the primary
endpoint being improvement in mortality, HF hospitaliza-
tion and LV end-systolic volume index reduction >15%,
with an accuracy, sensitivity and specificity of 70%. This
is of particular importance as the availability of accessible
data is critical for making informed decisions for an im-
portant group of patients with HF who may benefit from a
systematic approach to follow-up and interventions aimed
at improving their outcomes [37].

In another study, Tokodi et al. used ML to evaluate gen-
der differences as predictors of mortality in patients with
CRT and to evaluate the prediction of one- and three-year
mortality in the same patients. A total of 2191 patients with
CRT were evaluated using M L models in a retrospective
study, with the results indicating a significant discrepancy
in overall lifetime risk between men and women [9]. Spe-
cifically, in the male group, the mortality rate was 35.2%,
which contrasted with the mortality rate of 23.8% in the fe-
male group. Gender-specific variables predicting mortality
were NYHA functional class, LVEF, and HF etiology for the
female group, while QRS morphology, hemoglobin levels,
and allopurinol treatment were most significant for men
[10].

Wearable devices. \Wearable devices have the po-
tential to enable large-scale Al-based screening. Several
models have recently been validated using wrist-mount-
ed wearable devices. ECGs from wearable smartwatches
collected outside of clinical settings can effectively identify
patients with cardiac dysfunction, which is often life-threat-
ening and may be asymptomatic [38, 43].

Khunte reported a new strategy that automates the
detection of hidden cardiovascular diseases such as LV
systolic dysfunction, developed for noisy single-lead ECGs
from wearable and portable devices. A total of 385,601
ECGs were used to develop both a standard model and
a noise-adapted model. Both models showed similar per-
formance on standard ECGs, achieving an AUROC of
0.90 for detecting LVEF <40% [7, 11]. Despite the obvious
strengths, this study has 1 limitation that requires consid-
eration. The model was developed in patients with both
ECG and echocardiography. Since the training group had
a clinical indication for echocardiography, there is a selec-
tion bias. This limits the broader use of the algorithm for
screening tests for LV systolic dysfunction in those who
were clinically unaffected in the real world. Attia et al. con-
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ducted a prospective analysis in which Mayo Clinic pa-
tients were invited via email to download the Mayo Clinic
iPhone app, which transmits ECG records to a secure data
platform. In this study, 2454 patients were digitally enrolled
and 125,610 ECGs were sent. The Al algorithm identified
patients with low EF (defined as <40%) with an AUROC
of 0.885 and 0.881 using the mean prediction within a 30-
day window or the closest ECG to the echocardiogram that
determined EF, respectively. And the researchers conclude
that wearable ML-enabled technologies recording cardiac
function can assess compensated and decompensated HF
states [8].

Main limitations in the use of Al. What is called the
«Achilles heel» of Al is its subsequent generation of incor-
rect or inaccurate results after feeding the ML system er-
roneous data, or the «garbage in, garbage out» (GIGO)
process. Even perfectly trained Al applications can gener-
ate incorrect results when fed inaccurate input data [39,
42]. To date, the application of Al in cardiovascular dis-
eases has shown promise. However, as mentioned earli-
er, there are limitations in both the Al technology itself and
the infrastructures in the medical environment that hinder
the implementation of Al in everyday clinical practice. [ 6
]. First of all, large medical databases are rarely accessi-
ble due to privacy concerns. However, access to big data
is essential for the reliable development of Al diagnostic
models. Furthermore, in real-world hospital settings, vari-
ous medical data are often stored on multiple servers and,
in some cases, in paper records [41, 45]. Even if Al cre-
ates highly accurate predictive models, their effectiveness
may be limited if hundreds of prediction parameters are
scattered across different systems and must be entered
manually. Second, biases in Al algorithms often arise from
unrepresentative datasets, leading to biased predictions or
results in new populations [40]. Overfitting is another com-
mon problem that leads to poor generalizability of Al mod-
els. An overfitting model performs well on training data but
poorly on validation or test datasets. Several studies have
demonstrated poor generalizability of HF scoring systems
in new populations [46, 47] . A key limitation of current Al
approaches is their inability to establish causal relation-
ships. Furthermore, imprecise analysis and underreporting
hinder reliable assessments and may lead to misleading
interpretations. Therefore, results obtained using Al should
be carefully interpreted within the framework of medical
knowledge [10].

Future direction. Despite these limitations, Al has
shown early promise in HF diagnosis. Future directions
for Al-assisted echocardiography will likely focus on using
image acquisition guidance tools, improving the efficien-
cy and reliability of image interpretation, and automating
disease detection. A future goal for Al-assisted MRI may
be to further improve the speed of image analysis. Re-
al-time telemetry is another bright spot for Al-assisted HF
diagnosis [9].

DISCUSSION
Heart failure is indeed a complex disease and still re-
mains a major cause of morbidity and mortality in develop-
ing and developed countries. Standard drug therapy has
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been successful in the early stages of HF. End-stage HF
requires frequent hospitalization due to the presence of
severe HF and/or comorbidities, which requires strict im-
plementation of a personalized multidisciplinary approach
and quality measures to reduce rehospitalizations [48,
50]. Modern concepts of chronic heart failure (CHF) go
beyond the classical understanding of the disease as the
final stage of heart damage. To summarize, the integration
of Al in HF diagnostics is a transformative achievement in
cardiovascular medicine. The use of Al technologies, in-
cluding ML algorithms, DL models and predictive analytics,
has shown significant promise in improving the accuracy,
efficiency and timeliness of HF diagnostics. Using large
data sets and sophisticated computational methods, Al
systems can identify patterns and correlations that may be
missed by traditional diagnostic methods, leading to earlier
detection and personalized treatment strategies [49]. De-
spite impressive progress, there remain several challenges
and limitations that need to be addressed, including the
need for high-quality, diverse datasets; the potential for al-
gorithmic bias; and the requirement for clinical validation to
ensure real-world applicability. As research and technology
continue to advance, the role of Al in HF diagnosis is likely
to expand, offering new opportunities to improve patient
outcomes and advance the field of cardiology [51, 53].

Turning to Kazakhstan, the introduction of artificial intel-
ligence (Al) in the diagnosis and treatment of heart failure
(HF) in Kazakhstan is an important step in the moderniza-
tion of the national healthcare system [52, 55]. Analysis of
existing initiatives and studies shows that Al technologies
can significantly improve the quality of medical care, make
diagnostics more accurate and prompter, and treatment
more personalized and effective.

One of the key areas is remote patient monitoring using
Al systems, as implemented at the Center for Coordination
and Diagnostics of Cardiovascular Diseases in Karaganda.
This approach is especially important for Kazakhstan with
its large territory and dispersed population, where access
to quality medical care in remote regions is often limited.
The use of biometric data in real time allows not only to
identify life-threatening deviations, but also to optimize the
workload of medical personnel, reducing the number of
emergency hospitalizations [54, 57].

The Ai CARD platform, developed by Kazakhstani
specialist Dastan Mukhamediyev, demonstrates the pros-
pects for integrating Al into traditional diagnostic methods,
such as cardiac ultrasound. Acceleration and increased
accuracy of ultrasound interpretation contribute to earlier
detection of heart failure, which ultimately improves prog-
nosis for patients [56]. Similar technologies used by the
National Center for High Biomedical Technologies, with
an emphasis on improving the quality of ultrasound imag-
es, emphasize the importance of not only data analysis,
but also their pre-processing in order to increase informa-
tion content.

However, despite the obvious advantages, there are
also significant challenges. Firstly, the integration of Al re-
quires a reliable and scalable digital infrastructure, which
remains a problem for many regions of Kazakhstan [58,
59] . Secondly, it is necessary to train medical personnel
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to work with new technologies, as well as to develop stan-
dards and protocols for the use of Al in clinical practice. An
important task is also to ensure the confidentiality and se-
curity of medical data during their processing and storage.

Furthermore, the successful implementation of projects
such as Remedia LLP’s Al-enabled online consultations re-
quires close collaboration between government agencies,
healthcare institutions, and the private sector. Only an inte-
grated approach will ensure sustainable growth and inno-
vation in the fight against heart failure [60].

Analysis of data from the Unified National Electronic
Healthcare System for 2014 — 2019 highlights the scale
of the heart failure problem in Kazakhstan, noting the
high mortality rate and significant loss of working capacity
among the population. These facts reinforce the need for
active implementation of modern technologies, including
Al, to improve early diagnosis and increase the effective-
ness of treatment.

Despite promising results, this review has several lim-
itations. The included studies are heterogeneous in meth-
odology, data sources, and patient populations, making di-
rect comparisons difficult. Many Al models were validated
on retrospective datasets with limited external validation,
raising concerns about generalizability. Additionally, the
lack of standardized reporting on model interpretability and
clinical impact limits the translation into practice. Language
bias may also exist, as only English and Russian publica-
tions were included. Finally, publication bias toward posi-
tive results may have inflated the perceived effectiveness
of Al in heart failure diagnosis.

In the future, the development of Al in cardiology in
Kazakhstan should include expanding the functionality of
existing platforms, integration with other medical systems
and the use of big data for predictive analytics. This ap-
proach will allow not only to promptly identify signs of heart
failure, but also to predict the development of the disease,
select the most effective therapeutic regimens and carry
out preventive measures.

CONCLUSION

Artificial intelligence is a promising direction in heart
failure diagnostics, which can improve the accuracy, time-
liness and personalization of clinical decisions. Although
Al methods have already demonstrated high results in sci-
entific research, their large-scale application in healthcare
requires further efforts in adaptation, standardization and
evidence-based clinical validation.

In conclusion, it can be noted that artificial intelligence
is a promising tool for solving current problems of diagnosis
and treatment of heart failure in Kazakhstan. Existing proj-
ects and studies demonstrate that Al can improve the ac-
curacy and speed of diagnosis, facilitate the interpretation
of medical data and improve the quality of medical care.

The introduction of Al technologies, such as remote
monitoring, intelligent ultrasound imaging and online con-
sultations, contributes to more effective detection and
treatment of heart failure, which ultimately leads to a de-
crease in mortality and an improvement in the quality of
life of patients. Kazakhstan has the necessary potential for
further development of these technologies, but successful
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implementation requires further investment in digital infra-
structure, training of specialists and the formation of a reg-
ulatory framework.

An important aspect is intersectoral cooperation be-
tween government agencies, research centers and private
businesses, which will create conditions for sustainable
development and scaling of Al projects in cardiology. It is
also necessary to continue monitoring the effectiveness of
the implemented solutions and conduct scientific research
to adapt technologies to the characteristics of the Kazakh-
stani population and healthcare system.

Overall, the use of artificial intelligence in the fight
against heart failure opens up new opportunities to im-
prove the quality of medical care and improve the health
of the population of Kazakhstan. With the right strategy
and government support, these technologies can be-
come a key factor in reducing the burden of cardiovas-
cular diseases and increasing the overall efficiency of
healthcare.
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L{ernb. CuctemaTtunyeckmii 0630p COBPEMEHHbIX NOAXOA0B K MPUMEHEHWNI0 UCKYCCTBEHHOTO MHTENNEKTa B ANarHoCcTuke
cepaedHor HeJOCTaTOUMHOCTU, NPoaHaNM3npPoBaTh UCNOMb3yeMble anropuTMbl U MOLENN, OXapakTepmn3oBaTb UCTOYHUKM
MeguumnHekux aaHHblx (OKI, axokapguorpadus, SMK, KT/MPT, aHrnorpadus, HOCMMble YCTPOMCTBA), OUEHUTb KX
OnarHocTnyeckyto adpekTuBHOCTb (ToYHOCTb, AUC, 4yBCTBUTEMBHOCTL/CNEUMMUYHOCTE), a Takke onpenenutb
BO3MOXHOCTU U OrpaHNYeHns KNMHUYECKON UMMNIIeMeHTaUun ¢ akLEeHTOM Ha YCNoBUs 30paBooXpaHeHus B KaszaxcraHe.

Mamepuansi u memodbi. Cuctematumyeckumii nouck B 6asax gaHHblx PubMed, Scopus, Web of Science, IEEE Xplore
n Google Scholar (2015 — 2025 rT.) BbISIBUN peLiEeH3NpyeMble aHrMOoSA3bIYHbIE U PYCCKOA3bIYHbIE UCCMELOBaHUS MO
NPUMEHEHNI0 UCKYCCTBEHHOTO UHTENNEKTa B AMarHocTuke cepaevHon He4oCTaToOMHOCTU. [1Ba HE3aBUCUMBbIX peLeH3eHTa
NPOBOAWUITN CKPUHUHT CTaTel, N3BnevYeHne AaHHbIX U OLIEHKY KavyeCTBa; pesynsraTbl 60 0ToOpaHHbIX MCCneaoBaHUn Obinu
CUHTE3NPOBaHbI B onucaTterbHoM hopMe € KONMYeCTBEHHbIM 0606LLeHeM TaMm, rae 310 6bino yMecTHO.

Pesynbmamsl u obcyxdeHue. B 60 nccnegosaHusx (2015 — 2025 rr.) npuMeHeHne UCKYCCTBEHHOTO MHTENMeKTa K
AanHbiM JKT, axokapguorpadumn, OMK, Bu3yanmsaLmm 1 HOCMMbIX YCTPOWCTB MPOAEMOHCTPMPOBArno ANarHOCTUYECKYHO
TOYHOCTb Ha ypoBHe 85-95% (AUC 00 0,97). Anroputmel Ha ocHoBe KT HagexHo Boisensanu HFrEF, U-accuctuposaHHas
axokapauorpacmusa ynydwana cerMeHTaumio U CHuXana 3aBMCMMOCTb OT ornepatopa, MynbTumoaribHble Moaenu
ycunueanu nNporHo3npoBaHue oTeeTa Ha Tepanuio (Bkntoyas CPT), Toraa kak BHeapeHue B KasaxcTtaHe ocTaetcs Ha
HayanbHOM 3Tane KU3-3a orpaHUYeHun MHAPPACTPYKTYPbI U AOCTYNA K AaHHbIM.

Bbi800bI. V\CKyCCTBEHHbIV MHTENMEKT NpeacTaBnsaeT cobon NnepcrnekTMBHOE HanpaBneHne B AMarHOCTUKE cepaevyHon
HeJoCTaTOYHOCTM, CNOCOBHOE MOBLICUTH TOYHOCTb, CBOEBPEMEHHOCTb M MEPCOHaNM3aumilo KIUHUYECKUX peLLUeHUR.
Ona macwtabHOro KrmMHUYECKOro BHEAPEHUSI UCKYCCTBEHHOMO MHTEennekTa, ocobeHHo B KasaxctaHe, Heobxoanmbl
NPOCNEKTMBHAA Banupauus, CTaHOapTU3MPOBaHHbIE MPOTOKOMbI, JlOKamnbHble penpe3eHTaTuBHble 6asbl [AaHHbIX,
HagexHas undpoBas MHPaCcTpyKTypa 1 NOAroToBKa KaapoB.

Kntodessie crioea: UCKYCCTBEHHbIN UHTEMMEKT; cepaevHasl He4oCTaTOMHOCTb; MAarHOCTUKA; MaluMHHOe oby4deHue;
OKT; axokapguorpadus; meguumHckue gaHHble; rnybokoe obyyeHne
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3epmmeydiH makcampl. XKypek XeTKinikciagiriH guarHocTukanayga >kacan4bl MHTENMEeKTTiH KongaHy TacingepiH
Xyweni Typge Lony, KongaHblnFaH anropuTMAep MeH MOAENbAepai cunartTay, KongaHbiifaH MeguunHanbiK Aepektep
TypnepiH (OKI, axokapguorpadus, anekTpoHOblK MeauumHanblk xasdanap (OMXK), KT/MPT, aHrnorpadms, KuineTiH
KypbinFbinap) 6asHgay, mogenbaepaid Tmimainirin (ganaik, AUC, cesimTangbik/epekiienik) 6aranay eHe KnMHUKanbIK
€Hridy MyMKiHAiKTepi MeH nepcnekTuBanapbiH — KazakcTaHgarbl xxafFga MeH KMbIHObIKTapObl ePeKLUE ecKepe OTbIpbIn —
Garanay.

Mamepuandap xeHe odicmep. PubMed, Scopus, Web of Science, IEEE Xplore »xaHe Google Scholar
aepekkopnapsbl 6orbiHWa 2015 — 2025 xbingap apanbiFbiHarbl Makananap XXyueni Typae isaengi; XXypek XeTkinikcisgiriH
OvarHocTvkanayga »kacaHfbl WHTENNEKT KOonfaHfaH afbifilblH XX8He OpbIC TiMiHAEr peleH3vsanaHFaH 3epTreyrnep
aHblkTanabl. Eki Teyencis wonywsl Makananapgp!l ipikTen, AepekTepdi WeiFrapabl XeHe canacbiH baranagpl; 60 cankec
3epTTeyaiH HaTuXKenepi cunatTamanblk Typae BipikTipinin, AepekTepablH XeTKiNiKTi Gipkenkiniri 6onFaH xarganga caHabIk
CUHTE3 XKYyprisingi.

Hemuxenep xeHe mankbinay. 2015 — 2025 xbingap apaneifbiHgarbl 60 3epTTtey kepceTkeHgen, OKT,
axokapguorpadus, AMXK, megmumHanelk 6eriHeney XeHe KWINeTiH Kypbinfbinap AepeKkTepiHe KongaHblFaH XacaHabl
WHTENNeKT moaenbaepi agette 85-95% apanbifbiHaarbl gnarHocTukanelk gangik kepcetti (AUC maHaepi 0.97 genin).
OKI HerisiHgeri anroputmaep HFrEF-Ti cerimai Typae adbikTagbl, XKW apkbinbl XeTingipinreH axokapguorpadus
CerMeHTaLuMsiHbl XXakcapTbin, onepaTopfa ToyenainikTi a3anTTbl; kKenNnvoganbabl MOAeNbAEp Tepanusara xayanTtbl (OHbIH
iwiHoe CRT — XypekTi kalTa cuHXpoHAay Tepanusicel) 6ormkayabl xakcapTTel. KasakctaHgarbl eHridy ani 6actankel
caTtbinapga 6onbin, 6yn npouecke uMpnbiK MHPPaKypbIbIM MEH AepeKTepre KOrmKEeTIMAINIK CUSKTbI LIEKTeynep acep
eTen.

KopbimbiHObI. YKacaHabl MHTENMEKT — XKYPEK XKETKINIKCi3giriH AvarHocTvkanayaa Aangaik, XXegenmik >xaHe KnvHuKanblk
Wwewimaepai AapanaHgabipydbl >kKakcapTyFa MyMKIHAIK OepeTiH nepcnektmBanblk OafbiT. KeH aykbiMObl KIUMHMKAnbIK
eHridy ywiH (acipece KasakctaH >afganbiHOa) MPOCMEKTUBTI Banupauus, cTaHZapTTanfaH xatTamanap, KeprinikTi
penpes3eHTaTUBTI AEPEKTEP XUbIHTbIKTapbl, CEHIMAI CaHAbIK MHAPAKYPbINbIM XaHe MaMaHOapAbl OKbITY KaXKET.

Kinm ce30ep: )acaHObl MHTENIEKT; XXyPeK XXETKINIKCi3giri; AMarHocTrka; malimHanblk okbiTy; QKIT; axokapanorpadus;
MeauumMHanblK 4EPEKTEP; TEPEH OKbITY
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